Міскоснір ТС4426/ТС4427/ТС4428

1.5A Dual High-Speed Power MOSFET Drivers

Features:

- High Peak Output Current 1.5A
- Wide Input Supply Voltage Operating Range:
 4.5V to 18V
- High Capacitive Load Drive Capability 1000 pF in 25 ns (typ.)
- Short Delay Times 40 ns (typ.)
- Matched Rise and Fall Times
- Low Supply Current:
 - With Logic '1' Input 4 mA
- With Logic '0' Input 400 μA
- Low Output Impedance 7Ω
- Latch-Up Protected: Will Withstand 0.5A Reverse Current
- Input Will Withstand Negative Inputs Up to 5V
- ESD Protected 4 kV
- Pin-compatible with the TC426/TC427/TC428
- Space-saving 8-Pin MSOP and 8-Pin 6x5 DFN Packages

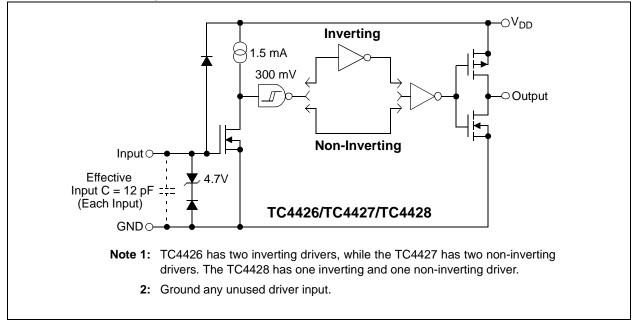
Applications:

- Switch Mode Power Supplies
- Line Drivers
- Pulse Transformer Drive

General Description:

The TC4426/TC4427/TC4428 are improved versions of the earlier TC426/TC427/TC428 family of MOSFET drivers. The TC4426/TC4427/TC4428 devices have matched rise and fall times when charging and discharging the gate of a MOSFET.

These devices are highly latch-up resistant under any conditions within their power and voltage ratings. They are not subject to damage when up to 5V of noise spiking (of either polarity) occurs on the ground pin. They can accept, without damage or logic upset, up to 500 mA of reverse current (of either polarity) being forced back into their outputs. All terminals are fully protected against Electrostatic Discharge (ESD) up to 4 kV.


The TC4426/TC4427/TC4428 MOSFET drivers can easily charge/discharge 1000 pF gate capacitances in under 30 ns. These devices provide low enough impedances in both the on and off states to ensure the MOSFET's intended state will not be affected, even by large transients.

Other compatible drivers are the TC4426A/TC4427A/ TC4428A family of devices. The TC4426A/TC4427A/ TC4428A devices have matched leading and falling edge input-to-output delay times, in addition to the matched rise and fall times of the TC4426/TC4427/ TC4428 devices.

Package Types

8-Pin MSOP/ PDIP/SOIC TC4426 TC44	27 TC4428	8	8-Pin DFN ⁽¹) TC4426	TC4427	TC4428
NC 1 ● 3 NC NC NC NC NC NC NC 1 ■ 10 NC 1 ■ 10 NC		NC 1 _C IN A 2	TC4426	8 NC 7 OUT A	NC OUT A	NC OUT A
GND 3 TC4427 6 V _{DD} V _{DD} V _{DD} IN B 4 TC4428 5 OUT B OUT	V _{DD} B OUT B	GND 3 IN B 4	TC4427 TC4428	6 V _{DD} 5 OUT B	V _{DD} OUT B	V _{DD} OUT B
Note 1: Exposed pad of the D	FN package is ele	ectrically isol	ated.			

Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage+22V
Input Voltage, IN A or IN B
(V _{DD} + 0.3V) to (GND – 5V)
Package Power Dissipation ($T_A \le 70^{\circ}C$)
DFN Note 3
MSOP
PDIP
SOIC
Storage Temperature Range65°C to +150°C
Maximum Junction Temperature+150°C
† Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These

Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

PIN FUNCTION TABLE

Name	Function				
NC	No Connection				
IN A	Input A				
GND	Ground				
IN B	Input B				
OUT B	Output B				
V _{DD}	Supply Input				
OUT A	Output A				
NC	No Connection				

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $T_A = +25^{\circ}C$ with $4.5V \le V_{DD} \le 18V$.									
Parameters	Sym	Min	Тур	Мах	Units	Conditions			
Input									
Logic '1', High Input Voltage	V _{IH}	2.4	—	—	V	Note 2			
Logic '0', Low Input Voltage	V _{IL}	—	_	0.8	V				
Input Current	I _{IN}	-1.0	_	+1.0	μA	$0V \le V_{IN} \le V_{DD}$			
Output		•							
High Output Voltage	V _{OH}	$V_{DD} - 0.025$	—	—	V	DC Test			
Low Output Voltage	V _{OL}	—	_	0.025	V	DC Test			
Output Resistance	R _O	—	7	10	Ω	I _{OUT} = 10 mA, V _{DD} = 18V			
Peak Output Current	I _{PK}	—	1.5		Α	V _{DD} = 18V			
Latch-Up Protection Withstand Reverse Current	I _{REV}	_	> 0.5	—	A	Duty cycle \leq 2%, t \leq 300 µs V _{DD} = 18V			
Switching Time (Note 1)					•				
Rise Time	t _R		19	30	ns	Figure 4-1			
Fall Time	t _F	—	19	30	ns	Figure 4-1			
Delay Time	t _{D1}	—	20	30	ns	Figure 4-1			
Delay Time	t _{D2}	—	40	50	ns	Figure 4-1			
Power Supply	•	•		•	•	•			
Power Supply Current	۱ _S	_	_	4.5 0.4	mA	$V_{IN} = 3V$ (Both inputs) $V_{IN} = 0V$ (Both inputs)			

Note 1: Switching times ensured by design.

2: For V temperature range devices, the V_{IH} (Min) limit is 2.0V.

3: Package power dissipation is dependent on the copper pad area on the PCB.

DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)

Electrical Specifications: Unless otherwise noted, over operating temperature range with $4.5V \le V_{DD} \le 18V$.										
Parameters	Sym	Min	Тур	Мах	Units	Conditions				
Input										
Logic '1', High Input Voltage	V _{IH}	2.4	_		V	Note 2				
Logic '0', Low Input Voltage	V_{IL}	—	—	0.8	V					
Input Current	I _{IN}	-10	—	+10	μΑ	$0V \le V_{IN} \le V_{DD}$				
Output										
High Output Voltage	V _{OH}	$V_{DD} - 0.025$	—		V	DC Test				
Low Output Voltage	V _{OL}	—	—	0.025	V	DC Test				
Output Resistance	R _O	—	9	12	Ω	I _{OUT} = 10 mA, V _{DD} = 18V				
Peak Output Current	I _{PK}	—	1.5		А	$V_{DD} = 18V$				
Latch-Up Protection Withstand Reverse Current	I _{REV}	—	>0.5	—	A	Duty cycle \leq 2%, t \leq 300 µs V _{DD} = 18V				
Switching Time (Note 1)										
Rise Time	t _R	—	_	40	ns	Figure 4-1				
Fall Time	t _F	—	_	40	ns	Figure 4-1				
Delay Time	t _{D1}	—	_	40	ns	Figure 4-1				
Delay Time	t _{D2}	—		60	ns	Figure 4-1				
Power Supply										
Power Supply Current	۱ _S		_	8.0 0.6	mA	V _{IN} = 3V (Both inputs) V _{IN} = 0V (Both inputs)				

Note 1: Switching times ensured by design.

2: For V temperature range devices, the V_{IH} (Min) limit is 2.0V.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, all parameters apply with 4.5V \leq V _{DD} \leq 18V.											
Parameters	Sym	Min	Тур	Max	Units	Conditions					
Temperature Ranges											
Specified Temperature Range (C)	T _A	0	—	+70	°C						
Specified Temperature Range (E)	T _A	-40	—	+85	°C						
Specified Temperature Range (V)	T _A	-40	—	+125	°C						
Maximum Junction Temperature	TJ	—	—	+150	°C						
Storage Temperature Range	T _A	-65	—	+150	°C						
Package Thermal Resistances											
Thermal Resistance, 8L-6x5 DFN	θ_{JA}	_	33.2	_	°C/W						
Thermal Resistance, 8L-MSOP	θ_{JA}	—	206	—	°C/W						
Thermal Resistance, 8L-PDIP	θ_{JA}	—	125	—	°C/W						
Thermal Resistance, 8L-SOIC	θ_{JA}	—	155	—	°C/W						

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$ with $4.5V \le V_{DD} \le 18V$.

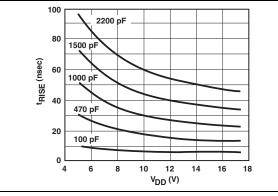


FIGURE 2-1: Rise Time vs. Supply Voltage.

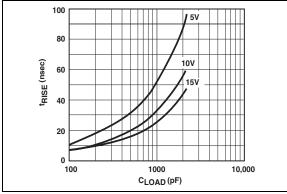


FIGURE 2-2: Rise Time vs. Capacitive Load.

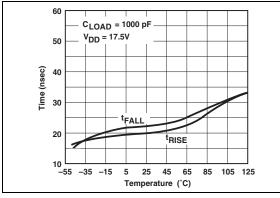


FIGURE 2-3: Temperature.

Rise and Fall Times vs.

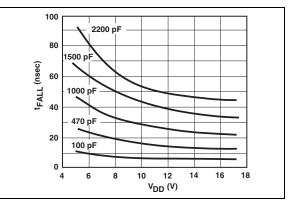


FIGURE 2-4: Fall Time vs. Supply Voltage.

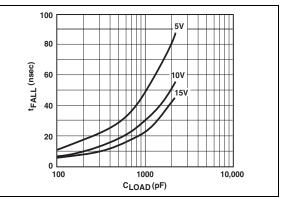


FIGURE 2-5: Fall Time vs. Capacitive Load.

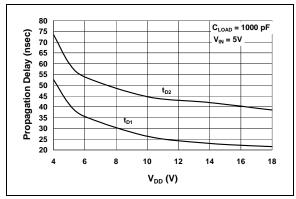


FIGURE 2-6: Supply Voltage.

Propagation Delay Time vs.

Note: Unless otherwise indicated, T_A = +25°C with 4.5V $\,\leq V_{DD} \leq$ 18V.

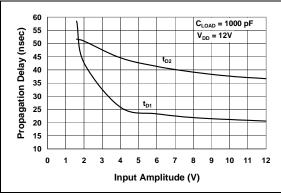


FIGURE 2-7: Propagation Delay Time vs. Input Amplitude.

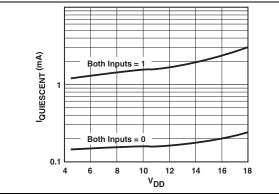


FIGURE 2-8: Supply Current vs. Supply Voltage.

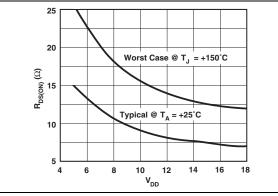


FIGURE 2-9: Supply Voltage.

Output Resistance (R_{OH}) vs.

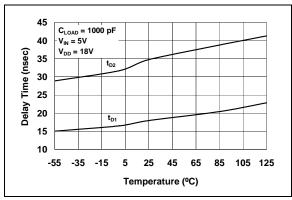
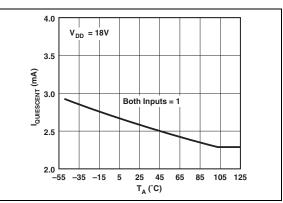
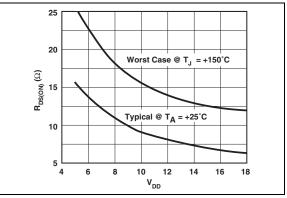
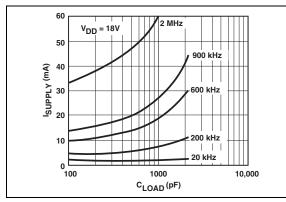
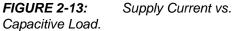


FIGURE 2-10: Propagation Delay Time vs. Temperature.


FIGURE 2-11: Supply Current vs. Temperature.

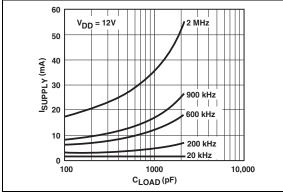


FIGURE 2-12: Output Resistance (R_{OL}) vs. Supply Voltage.

Note: Unless otherwise indicated, T_A = +25°C with 4.5V $\,\leq V_{DD} \leq$ 18V.

FIGURE 2-14: Supply Current vs. Capacitive Load.

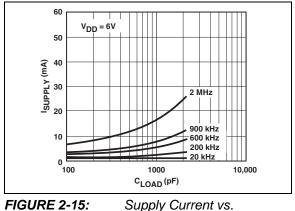


FIGURE 2-15: Capacitive Load.

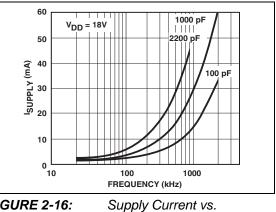


FIGURE 2-16: Frequency.

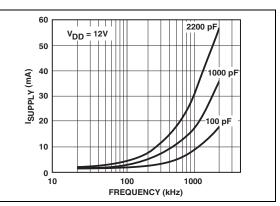


FIGURE 2-17: Supply Current vs. Frequency.

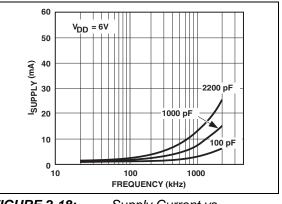


FIGURE 2-18: Frequency.

Supply Current vs.

Note: Unless otherwise indicated, T_A = +25°C with 4.5V $\,\leq V_{DD} \leq$ 18V.

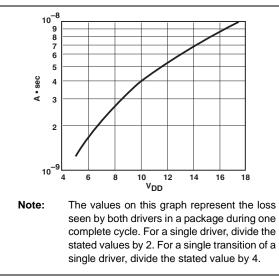


FIGURE 2-19: Crossover Energy vs. Supply Voltage.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1:	PIN FUNC	TION TABLE '	.,
8-Pin PDIP/ MSOP/SOIC	8-Pin DFN	Symbol	Description
1	1	NC	No connection
2	2	IN A	Input A
3	3	GND	Ground
4	4	IN B	Input B
5	5	OUT B	Output B
6	6	V _{DD}	Supply input
7	7	OUT A	Output A
8	8	NC	No connection
	PAD	NC	Exposed Metal Pad

TABLE 3-1: PIN FUNCTION TABLE ⁽¹⁾

Note 1: Duplicate pins must be connected for proper operation.

3.1 Inputs A and B

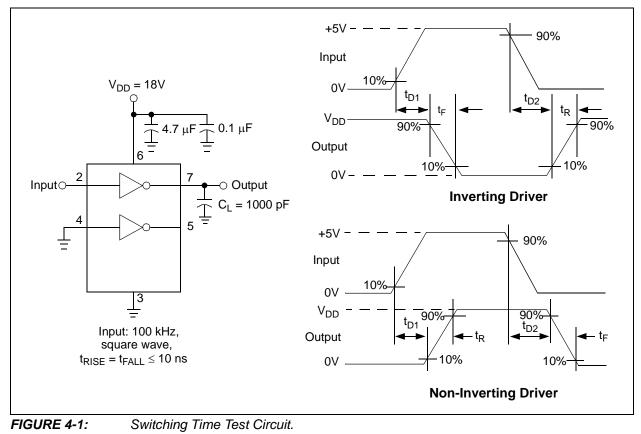
MOSFET driver inputs A and B are high-impedance, TTL/CMOS compatible inputs. These inputs also have 300 mV of hysteresis between the high and low thresholds that prevents output glitching even when the rise and fall time of the input signal is very slow.

3.2 Ground (GND)

Ground is the device return pin. The ground pin(s) should have a low-impedance connection to the bias supply source return. High peak currents will flow out the ground pin(s) when the capacitive load is being discharged.

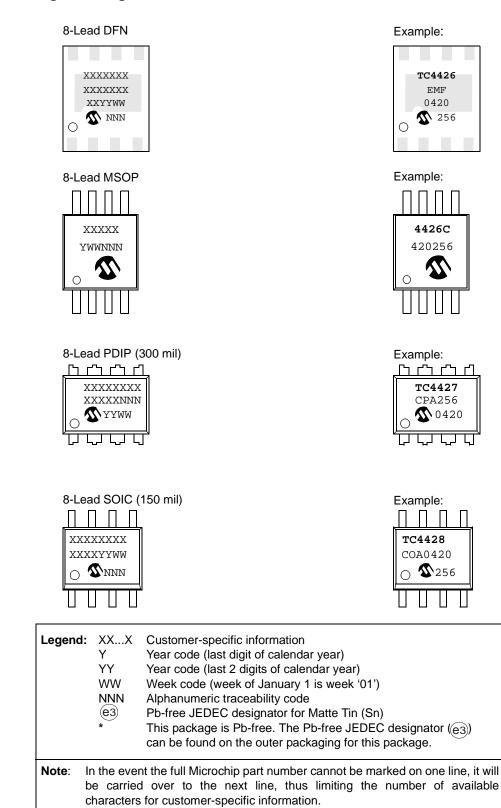
3.3 Output A and B

MOSFET driver outputs A and B are low-impedance, CMOS push-pull style outputs. The pull-down and pullup devices are of equal strength, making the rise and fall times equivalent.

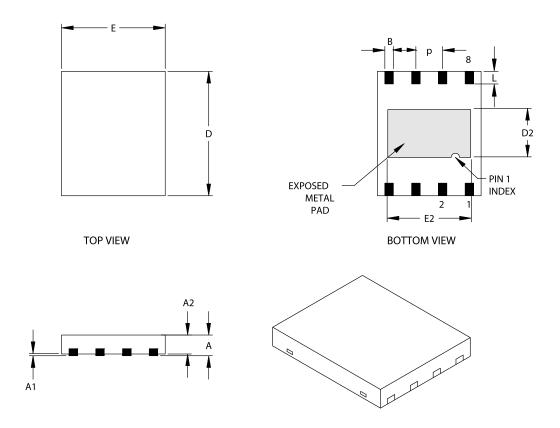

3.4 Supply Input (V_{DD})

The V_{DD} input is the bias supply for the MOSFET driver and is rated for 4.5V to 18V with respect to the ground pin. The V_{DD} input should be bypassed with local ceramic capacitors. The value of these capacitors should be chosen based on the capacitive load that is being driven. A value of 1.0 μ F is suggested.

3.5 Exposed Metal Pad


The exposed metal pad of the 6x5 DFN package is not internally connected to any potential. Therefore, this pad can be connected to a ground plane or other copper plane on a printed circuit board, to aid in heat removal from the package.

4.0 APPLICATIONS INFORMATION

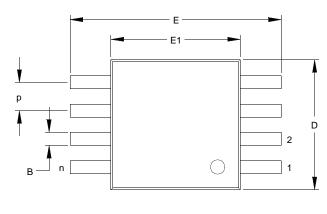

5.0 PACKAGING INFORMATION

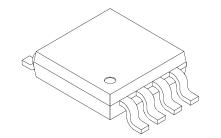
5.1 Package Marking Information

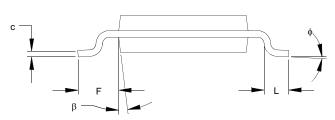
8-Lead Plastic Dual Flat No Lead Package (MF) 6x5 mm Body (DFN-S) - Saw Singulated

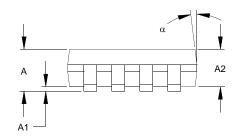
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES			ILLIMETERS*	
Dimension Limi	ts	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.050 BSC			1.27 BSC	
Overall Height	A	.033	.035	.037	0.85	0.90	0.95
Package Thickness	A2	.031	.035	.037	0.80	0.89	0.95
Standoff	A1	.000	.0004	.002	0.00	0.01	0.05
Base Thickness	A3	.007	.008	.009	0.17	0.20	0.23
Overall Length	E	.195	.197	.199	4.95	5.00	5.05
Exposed Pad Length	E2	.152	.157	.163	3.85	4.00	4.15
Overall Width	D	.234	.236	.238	5.95	6.00	6.05
Exposed Pad Width	D2	.089	.091	.093	2.25	2.30	2.35
Lead Width	В	.014	.016	.019	0.35	0.40	0.47
Lead Length	L	.024		.026	0.60		0.65


Notes:


JEDEC equivalent: MO-220 Drawing No. C04-122


Revised 11/3/03


8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

n	MIN	NOM	MAX	MIN		
				IVIIIN	NOM	MAX
		8			8	
р		.026 BSC			0.65 BSC	
А	-	-	.043	-	-	1.10
A2	.030	.033	.037	0.75	0.85	0.95
A1	.000	-	.006	0.00	-	0.15
E		.193 BSC		4.90 BSC		
E1	.118 BSC			3.00 BSC		
D		.118 BSC		3.00 BSC		
L	.016	.024	.031	0.40	0.60	0.80
F		.037 REF		0.95 REF		
ф	0°	-	8°	0°	-	8°
С	.003	.006	.009	0.08	-	0.23
В	.009	.012	.016	0.22	-	0.40
α	5°	-	15°	5°	-	15°
β	5°	-	15°	5°	-	15°
	A2 A1 E E1 D L F φ c B α	A2 .030 A1 .000 E	A2 .030 .033 A1 .000 - E .193 BSC E1 .118 BSC D .118 BSC L .016 .024 F .037 REF ϕ 0° - c .003 .006 B .009 .012 α 5° -	A2 .030 .033 .037 A1 .000 - .006 E .193 BSC .016 .021 E1 .118 BSC .031 .031 D .118 BSC .031 .031 F .016 .024 .031 F .037 REF .037 REF ϕ 0° - 8° c .003 .006 .009 B .009 .012 .016 α 5° - 15°	A2 .030 .033 .037 0.75 A1 .000 - .006 0.00 E .193 BSC - .006 0.00 E1 .118 BSC - .016 .024 .031 0.40 F .037 REF - 8° 0° .006 .009 0.08 B .009 .012 .016 0.22 .016 0.22 α 5° - 15° 5°	A2 .030 .033 .037 0.75 0.85 A1 .000 - .006 0.00 - E .193 BSC 4.90 BSC E1 .118 BSC 3.00 BSC D .118 BSC 3.00 BSC L .016 .024 .031 0.40 0.60 F .037 REF 0.95 REF ϕ 0° - 8° 0° - c .003 .006 .009 0.08 - B .009 .012 .016 0.22 - α 5° - 15° 5° -

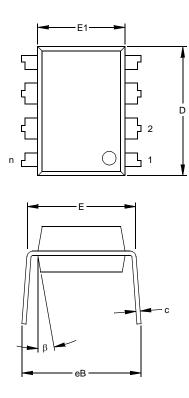
* Controlling Parameter

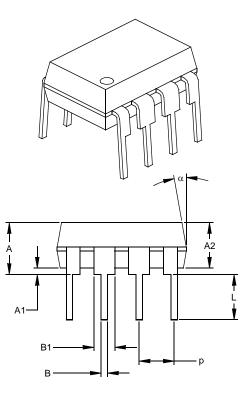
Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

See ASME Y14.5M


REF: Reference Dimension, usually without tolerance, for information purposes only.


See ASME Y14.5M

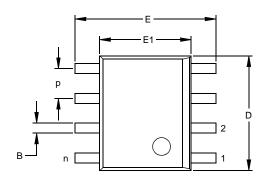
JEDEC Equivalent: MO-187 Drawing No. C04-111 Revised 07-21-05

8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

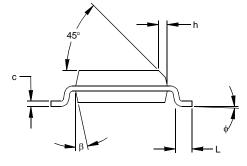
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

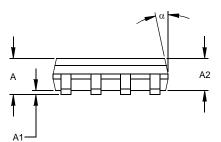
	Units		INCHES*		Ν	IILLIMETERS	5
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic


Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001


Drawing No. C04-018


8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES*			MILLIMETERS		
Dir	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		8			8		
Pitch	р		.050			1.27		
Overall Height	А	.053	.061	.069	1.35	1.55	1.75	
Molded Package Thickness	s A2	.052	.056	.061	1.32	1.42	1.55	
Standoff	§ A1	.004	.007	.010	0.10	0.18	0.25	
Overall Width	E	.228	.237	.244	5.79	6.02	6.20	
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99	
Overall Length	D	.189	.193	.197	4.80	4.90	5.00	
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51	
Foot Length	L	.019	.025	.030	0.48	0.62	0.76	
Foot Angle	φ	0	4	8	0	4	8	
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25	
Lead Width	В	.013	.017	.020	0.33	0.42	0.51	
Mold Draft Angle Top	α	0	12	15	0	12	15	
Mold Draft Angle Bottom	β	0	12	15	0	12	15	

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-012

Drawing No. C04-057

6.0 **REVISION HISTORY**

Revision E (December 2012)

Added a note to each package outline drawing.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. X	ХХ	xxx	¥	E	xamples:	
Device Tempe Ran		ape & Reel	PB Free	a)	TC4426COA:	1.5A Dual Inverting MOSFET driver, 0°C to +70°C SOIC package.
Device:	TC4426: 1.5A Dual M TC4427: 1.5A Dual M TC4428: 1.5A Dual M		Non-Inverting	b)	TC4426EUA:	1.5A Dual Inverting MOSFET driver, -40°C to +85°C. MSOP package.
Temperature Range:	$\begin{array}{rcl} C & = & 0^{\circ}C \text{ to } +70 \\ E & = & -40^{\circ}C \text{ to } +85 \\ V & = & -40^{\circ}C \text{ to } +12 \end{array}$		OIC only)	c)	TC4426EMF:	1.5A Dual Inverting MOSFET driver, -40°C to +85°C, DFN package.
Package:	MF = Dual, Flat, No MF713 = Dual, Flat, No (Tape and Re OA = Plastic SOIC OA713 = Plastic SOIC	o-Lead (6X5 mn eel) , (150 mil Body)	n Body), 8-lead), 8-lead	a)	TC4427CPA:	1.5A Dual Non-Inverting MOSFET driver, 0°C to +70°C PDIP package.
	(Tape and Re PA = Plastic DIP (3 UA = Plastic Micro UA713 = Plastic Micro (Tape and Re	800 mil Body), 8 Small Outline (Small Outline (MSOP), 8-lead	b)	TC4427EPA:	1.5A Dual Non-Inverting MOSFET driver, -40°C to +85°C PDIP package.
				a)	TC4428COA71	3:1.5A Dual Complementary MOSFET driver, 0°C to +70°C, SOIC package, Tape and Reel.
				b)	TC4428EMF:	1.5A Dual Complementary, MOSFET driver, -40°C to +85°C DFN package.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2002-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Rinted on recycled paper.

ISBN: 9781620767979

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/27/12